API Integration Guide

This guide provides comprehensive instructions for integrating Infactory’s APIs into your applications, enabling you to add intelligent data query capabilities with minimal effort.

API Integration Overview

When integrating with Infactory, your application will:

  1. Send questions or direct queries to Infactory’s API endpoints
  2. Receive structured data responses
  3. Present the information to your users or use it for further processing

Key Integration Decisions

Before diving into code, consider these important decisions:

Unified vs Direct Endpoints

Choose between the flexibility of the unified endpoint or the precision of direct endpoints

Authentication Method

Decide how to securely handle API keys in your application architecture

Error Handling Strategy

Plan how your application will respond to different API errors

Response Processing

Determine how to transform and display the structured data responses

Authentication

All Infactory API requests require authentication using API keys.

Securing Your API Keys

Never expose your API keys in client-side code. This could allow unauthorized access to your Infactory resources.

For web applications, use these approaches to keep your keys secure:

// Client code sends request to your backend
async function askQuestion(question) {
  const response = await fetch('/api/data-query', {
    method: 'POST',
    headers: { 'Content-Type': 'application/json' },
    body: JSON.stringify({ question })
  });
  return await response.json();
}

// Your backend server proxies the request to Infactory with the API key
// Express.js example
app.post('/api/data-query', async (req, res) => {
  try {
    const { question } = req.body;
    const infactoryResponse = await fetch('https://api.infactory.ai/v1/query', {
      method: 'POST',
      headers: {
        'Content-Type': 'application/json',
        'Authorization': `Bearer ${process.env.INFACTORY_API_KEY}`
      },
      body: JSON.stringify({
        query: question,
        project_id: process.env.INFACTORY_PROJECT_ID
      })
    });
    
    const data = await infactoryResponse.json();
    res.json(data);
  } catch (error) {
    res.status(500).json({ error: 'Error querying Infactory' });
  }
});

Integration Patterns

Chatbot or Conversational Interface

import { useState } from 'react';

function ChatInterface() {
  const [messages, setMessages] = useState([]);
  const [inputValue, setInputValue] = useState('');
  const [isLoading, setIsLoading] = useState(false);
  
  async function handleSubmit(e) {
    e.preventDefault();
    
    // Don't submit empty messages
    if (!inputValue.trim()) return;
    
    // Add user message to chat
    const userMessage = { type: 'user', text: inputValue };
    setMessages(prev => [...prev, userMessage]);
    
    // Clear input and show loading state
    setInputValue('');
    setIsLoading(true);
    
    try {
      // Send question to your backend proxy
      const response = await fetch('/api/ask', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify({ question: userMessage.text })
      });
      
      const data = await response.json();
      
      // Add bot response to chat
      setMessages(prev => [
        ...prev, 
        { 
          type: 'bot', 
          text: 'Here\'s what I found:', 
          data: data.data 
        }
      ]);
    } catch (error) {
      // Handle errors
      setMessages(prev => [
        ...prev, 
        { 
          type: 'bot', 
          text: 'Sorry, I encountered an error. Please try again.' 
        }
      ]);
    } finally {
      setIsLoading(false);
    }
  }
  
  return (
    <div className="chat-container">
      <div className="chat-messages">
        {messages.map((message, index) => (
          <div key={index} className={`message ${message.type}`}>
            <div className="message-text">{message.text}</div>
            {message.data && (
              <div className="message-data">
                <pre>{JSON.stringify(message.data, null, 2)}</pre>
              </div>
            )}
          </div>
        ))}
        {isLoading && (
          <div className="message bot loading">
            <div className="loading-indicator">...</div>
          </div>
        )}
      </div>
      
      <form onSubmit={handleSubmit} className="chat-input-form">
        <input
          type="text"
          value={inputValue}
          onChange={e => setInputValue(e.target.value)}
          placeholder="Ask a question about your data..."
          disabled={isLoading}
        />
        <button type="submit" disabled={isLoading}>
          Send
        </button>
      </form>
    </div>
  );
}

Search Interface

import { useState } from 'react';

function SearchInterface() {
  const [query, setQuery] = useState('');
  const [results, setResults] = useState(null);
  const [isLoading, setIsLoading] = useState(false);
  const [error, setError] = useState(null);
  
  async function handleSearch(e) {
    e.preventDefault();
    
    if (!query.trim()) return;
    
    setIsLoading(true);
    setError(null);
    
    try {
      const response = await fetch('/api/search', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify({ question: query })
      });
      
      if (!response.ok) {
        throw new Error('Search failed');
      }
      
      const data = await response.json();
      setResults(data);
    } catch (error) {
      setError('An error occurred while searching. Please try again.');
      setResults(null);
    } finally {
      setIsLoading(false);
    }
  }
  
  return (
    <div className="search-container">
      <form onSubmit={handleSearch} className="search-form">
        <input
          type="text"
          value={query}
          onChange={e => setQuery(e.target.value)}
          placeholder="Search your data..."
          disabled={isLoading}
        />
        <button type="submit" disabled={isLoading}>
          {isLoading ? 'Searching...' : 'Search'}
        </button>
      </form>
      
      {error && <div className="error-message">{error}</div>}
      
      {results && (
        <div className="search-results">
          <h2>Results</h2>
          <div className="results-info">
            <p>Query used: {results.query_used}</p>
            <p>Execution time: {results.execution_time_ms}ms</p>
          </div>
          <div className="data-results">
            {Array.isArray(results.data) ? (
              <table>
                <thead>
                  <tr>
                    {Object.keys(results.data[0] || {}).map(key => (
                      <th key={key}>{key}</th>
                    ))}
                  </tr>
                </thead>
                <tbody>
                  {results.data.map((item, index) => (
                    <tr key={index}>
                      {Object.values(item).map((value, i) => (
                        <td key={i}>{typeof value === 'object' ? JSON.stringify(value) : value}</td>
                      ))}
                    </tr>
                  ))}
                </tbody>
              </table>
            ) : (
              <pre>{JSON.stringify(results.data, null, 2)}</pre>
            )}
          </div>
        </div>
      )}
    </div>
  );
}

Dashboard Integration

For dashboards, you’ll often want to:

  1. Predefine the queries to use
  2. Call direct endpoints instead of the unified endpoint
  3. Use a charting library to visualize the results
import { useState, useEffect } from 'react';
import { Chart as ChartJS, CategoryScale, LinearScale, BarElement, Title, Tooltip, Legend } from 'chart.js';
import { Bar } from 'react-chartjs-2';

// Register Chart.js components
ChartJS.register(CategoryScale, LinearScale, BarElement, Title, Tooltip, Legend);

function Dashboard() {
  const [salesData, setSalesData] = useState(null);
  const [isLoading, setIsLoading] = useState(true);
  const [error, setError] = useState(null);
  
  useEffect(() => {
    async function fetchDashboardData() {
      try {
        // Fetch sales by region data
        const response = await fetch('/api/dashboard/sales-by-region');
        
        if (!response.ok) {
          throw new Error('Failed to fetch dashboard data');
        }
        
        const data = await response.json();
        setSalesData(data);
      } catch (error) {
        setError('Failed to load dashboard data. Please try again later.');
      } finally {
        setIsLoading(false);
      }
    }
    
    fetchDashboardData();
  }, []);
  
  // Format data for Chart.js
  const chartData = salesData ? {
    labels: salesData.data.map(item => item.region),
    datasets: [
      {
        label: 'Sales by Region',
        data: salesData.data.map(item => item.sales),
        backgroundColor: 'rgba(53, 162, 235, 0.5)',
      },
    ],
  } : null;
  
  const chartOptions = {
    responsive: true,
    plugins: {
      legend: {
        position: 'top',
      },
      title: {
        display: true,
        text: 'Sales by Region',
      },
    },
  };
  
  return (
    <div className="dashboard">
      <h1>Sales Dashboard</h1>
      
      {isLoading && <p>Loading dashboard data...</p>}
      {error && <p className="error">{error}</p>}
      
      {chartData && (
        <div className="chart-container">
          <Bar options={chartOptions} data={chartData} />
          <p className="data-timestamp">
            Last updated: {new Date().toLocaleString()}
          </p>
        </div>
      )}
    </div>
  );
}

Backend Implementation Examples

Node.js (Express)

const express = require('express');
const cors = require('cors');
const axios = require('axios');
require('dotenv').config();

const app = express();
app.use(cors());
app.use(express.json());

// Environment variables
const INFACTORY_API_KEY = process.env.INFACTORY_API_KEY;
const INFACTORY_PROJECT_ID = process.env.INFACTORY_PROJECT_ID;

// Unified endpoint proxy
app.post('/api/ask', async (req, res) => {
  try {
    const { question } = req.body;
    
    const response = await axios.post(
      'https://api.infactory.ai/v1/query',
      {
        query: question,
        project_id: INFACTORY_PROJECT_ID
      },
      {
        headers: {
          'Content-Type': 'application/json',
          'Authorization': `Bearer ${INFACTORY_API_KEY}`
        }
      }
    );
    
    res.json(response.data);
  } catch (error) {
    console.error('Error querying Infactory:', error.response?.data || error.message);
    
    res.status(500).json({
      error: 'Failed to query Infactory',
      message: error.response?.data?.message || error.message
    });
  }
});

// Direct endpoint for dashboard
app.get('/api/dashboard/sales-by-region', async (req, res) => {
  try {
    const response = await axios.post(
      'https://api.infactory.ai/v1/queries/sales_by_region',
      {}, // No parameters needed for this example
      {
        headers: {
          'Content-Type': 'application/json',
          'Authorization': `Bearer ${INFACTORY_API_KEY}`
        }
      }
    );
    
    res.json(response.data);
  } catch (error) {
    console.error('Error fetching dashboard data:', error.response?.data || error.message);
    
    res.status(500).json({
      error: 'Failed to fetch dashboard data',
      message: error.response?.data?.message || error.message
    });
  }
});

const PORT = process.env.PORT || 3001;
app.listen(PORT, () => {
  console.log(`Server running on port ${PORT}`);
});

Python (FastAPI)

from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import httpx
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()
INFACTORY_API_KEY = os.getenv("INFACTORY_API_KEY")
INFACTORY_PROJECT_ID = os.getenv("INFACTORY_PROJECT_ID")

app = FastAPI()

# Configure CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # In production, specify your frontend domain
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

class Question(BaseModel):
    question: str

@app.post("/api/ask")
async def ask_question(question_data: Question):
    """Proxy endpoint for the unified Infactory API"""
    async with httpx.AsyncClient() as client:
        try:
            response = await client.post(
                "https://api.infactory.ai/v1/query",
                json={
                    "query": question_data.question,
                    "project_id": INFACTORY_PROJECT_ID
                },
                headers={
                    "Content-Type": "application/json",
                    "Authorization": f"Bearer {INFACTORY_API_KEY}"
                }
            )
            
            response.raise_for_status()
            return response.json()
        except httpx.HTTPStatusError as e:
            raise HTTPException(
                status_code=e.response.status_code,
                detail=e.response.json()
            )
        except Exception as e:
            raise HTTPException(
                status_code=500,
                detail=f"Failed to query Infactory: {str(e)}"
            )

@app.get("/api/dashboard/sales-by-region")
async def get_sales_by_region():
    """Endpoint for dashboard sales by region data"""
    async with httpx.AsyncClient() as client:
        try:
            response = await client.post(
                "https://api.infactory.ai/v1/queries/sales_by_region",
                json={},  # No parameters needed for this example
                headers={
                    "Content-Type": "application/json",
                    "Authorization": f"Bearer {INFACTORY_API_KEY}"
                }
            )
            
            response.raise_for_status()
            return response.json()
        except httpx.HTTPStatusError as e:
            raise HTTPException(
                status_code=e.response.status_code,
                detail=e.response.json()
            )
        except Exception as e:
            raise HTTPException(
                status_code=500,
                detail=f"Failed to fetch dashboard data: {str(e)}"
            )

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)

Error Handling

Implement comprehensive error handling to ensure a smooth user experience:

async function queryInfactory(question) {
  try {
    const response = await fetch('/api/ask', {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({ question })
    });
    
    if (!response.ok) {
      const errorData = await response.json();
      
      // Handle specific error types
      switch (errorData.error) {
        case 'authentication_failed':
          console.error('API key authentication failed');
          return { error: 'Authentication failed. Please check your API key.' };
          
        case 'invalid_query':
          console.error('Invalid query format');
          return { error: 'Your question could not be processed. Please try rephrasing it.' };
          
        case 'no_matching_query':
          console.error('No matching query found');
          return { error: 'I don\'t know how to answer that question yet. Please try something else.' };
          
        case 'rate_limit_exceeded':
          console.error('Rate limit exceeded');
          return { error: 'Too many requests. Please try again in a moment.' };
          
        default:
          console.error('API error:', errorData);
          return { error: 'An error occurred. Please try again later.' };
      }
    }
    
    return await response.json();
  } catch (error) {
    console.error('Network error:', error);
    return { error: 'Could not connect to the server. Please check your network connection.' };
  }
}

Testing Your Integration

Before deploying to production, thoroughly test your integration:

1

Test with simple questions

Start with straightforward questions that you know should work.

Example: “What is the average sales by region?”

2

Test edge cases

Try questions that might be challenging or at the boundaries of what your queries can handle.

Example: “What’s the correlation between customer age and purchase amount in the northeast region for Q2?”

3

Test error scenarios

Deliberately trigger errors to ensure your error handling works properly.

Examples:

  • Use an invalid API key
  • Ask questions your queries can’t answer
  • Send malformed requests
4

Performance testing

Test with concurrent users and measure response times.

Tools to consider:

  • Apache JMeter
  • Locust
  • k6

Advanced Integration Techniques

Caching Responses

Implement caching to improve performance and reduce API calls:

// Simple in-memory cache
const cache = new Map();
const CACHE_TTL = 1000 * 60 * 5; // 5 minutes

async function queryWithCache(question) {
  // Generate a cache key from the question
  const cacheKey = question.trim().toLowerCase();
  
  // Check if we have a fresh cached response
  const cachedItem = cache.get(cacheKey);
  if (cachedItem && Date.now() - cachedItem.timestamp < CACHE_TTL) {
    console.log('Cache hit for:', cacheKey);
    return cachedItem.data;
  }
  
  // If not in cache or expired, query the API
  const response = await queryInfactory(question);
  
  // Cache the response if successful
  if (!response.error) {
    cache.set(cacheKey, {
      timestamp: Date.now(),
      data: response
    });
  }
  
  return response;
}

Streaming Responses

For queries that might return large datasets, use streaming:

async function streamResults(question, onChunk, onComplete, onError) {
  try {
    const response = await fetch('/api/stream', {
      method: 'POST',
      headers: {
        'Content-Type': 'application/json',
        'Accept': 'text/event-stream'
      },
      body: JSON.stringify({ question })
    });
    
    if (!response.ok) {
      const errorData = await response.json();
      onError(errorData);
      return;
    }
    
    const reader = response.body.getReader();
    const decoder = new TextDecoder();
    
    let buffer = '';
    
    while (true) {
      const { done, value } = await reader.read();
      
      if (done) {
        if (buffer.trim()) {
          try {
            const chunk = JSON.parse(buffer);
            onChunk(chunk);
          } catch (e) {
            console.error('Error parsing final chunk:', buffer);
          }
        }
        onComplete();
        break;
      }
      
      // Decode and buffer the incoming data
      buffer += decoder.decode(value, { stream: true });
      
      // Process complete JSON objects
      let newlineIndex;
      while ((newlineIndex = buffer.indexOf('\n')) >= 0) {
        const line = buffer.slice(0, newlineIndex).trim();
        buffer = buffer.slice(newlineIndex + 1);
        
        if (line.startsWith('data: ')) {
          const jsonStr = line.slice(6);
          try {
            const chunk = JSON.parse(jsonStr);
            onChunk(chunk);
          } catch (e) {
            console.error('Error parsing chunk:', jsonStr);
          }
        }
      }
    }
  } catch (error) {
    onError({ error: 'Stream error', message: error.message });
  }
}

// Example usage
streamResults(
  "List all products and their details",
  (chunk) => {
    console.log('Received chunk:', chunk);
    // Update UI with this chunk
  },
  () => {
    console.log('Stream complete');
    // Update UI to show completion
  },
  (error) => {
    console.error('Stream error:', error);
    // Show error in UI
  }
);

Best Practices

Security First

Never expose API keys in client-side code. Always use a backend service to make API calls.

Graceful Degradation

Design your application to handle API outages gracefully, providing fallback experiences.

Rate Limit Handling

Implement exponential backoff strategies for handling rate limits.

Comprehensive Logging

Log API interactions for debugging and monitoring purposes, but be careful not to log sensitive data.

Smart Caching

Implement caching strategies to improve performance and reduce API calls.

Consistent Error Handling

Develop a consistent approach to handling and displaying errors across your application.

Next Steps

Now that you understand how to integrate with Infactory’s APIs, you might want to explore: